ANCIENT AND MODERN ANNEX ENGINEERING

LIBRARY

THE ISTHMIAN CANAL

WILLIAM H. BURR

ANCIENT

AND

MODERN ENGINEERING

AND

THE ISTHMIAN CANAL.

BY

WILLIAM H. BURR, C.E.,

Professor of Civil Engineering in Columbia University; Member of the American Society of Civil Engineers and of the Institution of Civil Engineers of Great Britain.

FIRST EDITION. FIRST THOUSAND.

• • • • • •

1 - 4 1 2 212 - 5

ĭ

NEW YORK: JOHN WILEY & SONS. London: CHAPMAN & HALL, Limited. 1902.

THE LIBRARY OF CONGRESS, TWO CUPILE REOBINES NOV. 29 1000 COPVRIGHT ENTRY Nov. 19-1902 CLASS Q XXO NO. 46360 COPY B.

Copyright, 1902, BY WILLIAM H. BUR**R.**

7.1175 1. 1. 1. 1.

۰.

ROBERT DRUMMOND, PRINTER, NEW YORK.

INTRODUCTION.

THIS book is the outcome of a course of six lectures delivered at the Cooper Union in the city of New York in February and March, 1902, under the auspices of Columbia University. It seemed desirable by the President of the University that the subject-matter of the lectures should be prepared for ultimate publication. The six Parts of the book, therefore, comprise the substance of the six lectures, suitably expanded for the purposes of publication.

It may be interesting to state that the half-tone illustrations have, with scarcely an exception, been prepared from photographs of the actual subjects illustrated. All such illustrations in Parts V and VI devoted to the Nicaragua and Panama Canal routes are made from photographs at the various locations by members of the force of the Isthmian Canal Commission; they are, therefore, absolutely true representations of the actual localities to which they apply.

For other illustrations the author wishes to express his indebtedness to Messrs. G. P. Putnam's Sons, Messrs. Turneaure and Russell, John Wiley & Sons, The Morrison-Jewell Filtration Company, Mr. H. M. Sperry, Signal Engineer, *The Engineering News, The Railroad Gazette,* The American Society of Civil Engineers, The Standard Switch and Signal Company, The iii

INTRODUCTION.

Baldwin Locomotive Works, The American Locomotive Works, and the International Pump Company, and to others from whom the author has received courtesies which he deeply appreciates.

The classification or division of the matter of the text, and the table of contents, have been made so complete, with a view to convenience even of the desultory reader in seeking any particular subject or paragraph, that no index has been prepared, as it is believed that the table of contents, as arranged, practically supplies the information ordinarily given by a comprehensive index.

Complete and detailed treatments of the purely technical matters covered by Part II will be found in the author's "Elasticity and Resistance of Materials" and in his "Stresses in Bridge and Roof Trusses, Arched Ribs and Suspension Bridges."

W. H. B.

COLUMBIA UNIVERSITY, October 24, 1902.

CONTENTS.

PART I.

ANCIENT CIVIL-ENGINEERING WORKS.

CHAPTER I.

ART.		PAGE
1.	Introductory	I
	Hydraulic Works of Chaldea and Egypt	
3.	Structural Works in Chaldea and Egypt	4
4.	Ancient Maritime Commerce	7
5.	The Change of the Nile Channel at Memphis	8
	The Pyramids	
7.	Obelisks, Labyrinths, and Temples	12
8.	Nile Irrigation	13
	Prehistoric Bridge-building	
10.	Ancient Brick-making	15
11.	Ancient Arches	16

CHAPTER II.

12.	The Beginnings of Engineering Works of Record	19
13.	The Appian Way and other Roman Roads	20
	Natural Advantages of Rome in Structural Stones	
	Pozzuolana Hydraulic Cement	
	Roman Bricks and Masonry	25
	Roman Building Laws	
18.	Old Roman Walls	27
	The Servian Wall	
	Old Roman Sewers	
	Early Roman Bridges	
22.	D'In of Alexandre	35
23.	Militaria Dallaria (1) D	35
24.	The Roman Arch	35
	77	J°

CONTENTS.

CHAPTER III.

ART.	•	PAGE
25.	The Roman Water-supply	37
26.	The Roman Aqueducts	38
27.	Anio Vetus	39
28.	Tepula	40
2 9.	Virgo	40
30.	Alsietina	40
31.	Claudia	41
32.	Anio Novus	42
33.	Lengths and Dates of Aqueducts	42
34.	Intakes and Settling-basins	43
35.	Delivery-tanks	44
36.	Leakage and Lining of Aqueducts	44
37.	Grade of Aqueduct Channels	45
	Qualities of Roman Waters	
39.	Combined Aqueducts	46
40.	Property Rights in Roman Waters	46
41.	Adjutages and Unit of Measurement	47
	The Stealing of Water	
43.	Aqueduct Alignment and Design of Siphons	49

CHAPTER IV.

44.	Antiquity of Masonry Aqueducts
	Pont du Gard
45.	Aqueducts at Segovia, Metz, and other Places
47.	Tunnels
	Ostia, the Harbor of Rome
49.	Harbors of Claudius and Trajan

CHAPTER V.

50.	Ancient Engineering Science	60
	Ancient Views of the Physical Properties of Materials	61
52.	Roman Civil Engineers Searching for Water	62
53.	Locating and Designing Conduits	63
	Siphons	64
55.	Healthful Sites for Cities	65
56.	Foundations of Structures	65
57.	Pozzuolana and Sand	66
	Lime Mortar	66
59.	Roman Bricks according to Vitruvius	66
бо.	Roman Timber	67
бі.	The Rules of Vitruvius for Harbors	67
62.	The Thrusts of Arches and Earth; Retaining-walls and Pavements	68
63.	The Professional Spirit of Vitruvius	68
64.	Mechanical Appliances of the Ancients	69
65.	Unlimited Forces and Time	69

PART II.

BRIDGES.

CHAPTER VI.

ART.		PAGE
66.	Introductory	70
67.	First Cast-iron Arch	70
68.	Early Timber Bridges in America	7 I
	Town Lattice Bridge	
	Howe Truss	
	Pratt Truss	
	Squire Whipple's Work	
	Character of Work of Early Builders	
40		

CHAPTER VII.

74.	Modern Bridge Theory	78
75.	The Stresses in Beams	79
	Vertical and Horizontal Shearing Stresses	80
77.	Law of Variation of Stresses of Tension and Compression	82
	Fundamental Formulæ of Theory of Beams	83
7 9.	Practical Applications	85
80.	Deflection.	86
81.	Bending Moments and Shears with Single Load	87
82.	Bending Moments and Shears with any System of Loads	89
83.	Bending Moments and Shears with Uniform Loads	92
	Greatest Shear for Uniform Moving Load	94
	Bending Moments and Shears for Cantilever Beams	<u>9</u> б
86.	Greatest Bending Moment with any System of Loading	97
87.	Applications to Rolled Beams	9 9

CHAPTER VIII.

88.	The Truss Element or Triangle of Bracing	100
89.	Simple Trusses	101
90.	The Pratt Truss Type	102
	The Howe Truss Type	
	The Simple Triangular Truss	
	Through- and Deck-Bridges	
94.	Multiple Systems of Triangulation	108
95.	Influence of Mill and Shop Capacity on Length of Span	100
	Trusses with Broken or Inclined Chords	
	Position of any Moving Load for Greatest Webb Stress	
	Application of Criterions for both Chord and Web Stresses	
	Influence Lines	
	Influence Lines for Moments both for Beams and Trusses	
	Influence Lines for Shears both for Beams and Trusses	
102.	Application of Influence-line Method to Trusses	118

CONTENTS.

CHAPTER IX.

ART.	· · · · · · · · · · · · · · · · · · ·	PAGE
103.	Lateral Wind Pressure on Trusses	122
104.	Upper and Lower Lateral Bracing	124
105.	Bridge Plans and Shopwork	125
106.	Erection of Bridges	126
107.	Statically Determinate Trusses	126
108.	Continuous Beams and Trusses-Theorem of Three Moments	128
109.	Application to Draw- or Swing-bridges	130
110.	Special Method for Deflection of Trusses	130
111.	Application of Method for Deflection of Triangular Frame	133
II2.	Application of Method for Deflection to Truss	134
113.	Method of Least Work	137
1 14.	Application of Method of Least Work to General Problem	138
115.	Application of Method of Least Work to Trussed Beam	139
1 16.	Removal of Indetermination by Methods of Least Work and Deflection	141

CHAPTER X.

117.	The Arched Rib, of both Steel and Masonry	142
118.	Arched Rib with Ends Fixed	144
	Arched Rib with Ends Jointed	
120.	Arched Rib with Crown and Ends Jointed	145
121.	Relative Stiffness of Arched Ribs	145
122.	General Conditions of Analysis of Arched Ribs	146

CHAPTER XI.

123.	Beams of	Combined	Steel	and	Concrete	149
------	----------	----------	-------	-----	----------	-----

CHAPTER XII.

124.	The Masonry Arch	154
125.	Old and New Theories of the Arch	155
126.	Stress Conditions in the Arch-ring	158
	Applications to an Actual Arch	
	Intensities of Pressure in the Arch-ring	
129.	Permissible Working Pressures	163
130.	Largest Arch Spans	163

CHAPTER XIII.

131.	Cantilever and Stiffened Suspension Bridges	166
132.	Cantilever Bridges	166
133.	Stiffened Suspension Bridges.	168
134.	The Stiffening Truss	170
135.	Location and Arrangement of Stiffening Trusses	171
136.	Division of Load between Cables and Stiffening Truss	173
137.	Stresses in Cables and Moments and Shears in Trusses	174
138.	Thermal Stresses and Moments in Stiffened Suspension Bridges	175
139.	Formation of the Cables	176
140.	Economical Limits of Spans	177

PART III.

WATER-WORKS FOR CITIES AND TOWNS.

CHAPTER XIV.

nn.		AGR
141.	Introductory	179
142.	First Steam-pumps	180
143.	Water-supply of Paris and London	181
144.	Early Water-pipes	181
145.	Earliest Water-supplies in the United States	182
146.	Quality and Uses of Public Water-supply	182
147.	Amount of Public Water-supply	183
	Increase of Daily Consumption and the Division of that Consumption	
149.	Waste of Public Water	186
150.	Analysis of Reasonable Daily Supply per Head of Population	188
151.	Actual Daily Consumption in Cities of the United States	189
152.	Actual Daily Consumption in Foreign Cities	191
	Variations in Rate of Daily Consumption	
154.	Supply of Fire-streams.	193

CHAPTER XV.

	Waste of Water, Particularly in the City of New York	
156.	Division of Daily Consumption in the City of New York	197
157.	Daily Domestic Consumption	198
158.	Incurable and Curable Wastes	199
159.	Needless and Incurable Waste in City of New York	200
160.	Increase in Population	200
161.	Sources of Public Water-supplies	202
	Rain-gauges and their Records	
163.	Elements of Annual and Monthly Rainfall	204
164.	Hourly or Less Rates of Rainfall	207
165.	Extent of Heavy Rain-storms	207
166.	Provision for Low Rainfall Years	208
167.	Available Portion of Rainfall or Run-off of Watersheds	209
168.	Run-off of Sudbury Watershed	211
169.	Run-off of Croton Watershed	211
170.	Evaporation from Reservoirs	213
171.	Evaporation from the Earth's Surface	215

CHAPTER XVI.

172.	Application of Fitzgerald's Results to the Croton Watershed	216
173.	The Capacity of the Croton Watershed	217
174.	Necessary Storage for New York Supply to Compensate for Deficiency	218
175.	No Exact Rule for Storage Capacity	220
176.	The Color of Water	221
177.	Stripping Reservoir Sites	222

CONTENTS.

ART.		PAGE
178.	Average Depth of Reservoirs should be as Great as Practicable	224
179.	Overturn of Contents of Reservoirs Due to Seasonal Changes of Temperature	224
180.	The Construction of Reservoirs	225
181.	Gate-houses, and Pipe-lines in Embankments	229
182.	High Masonry Dams	230

CHAPTER XVII.

183.	Gravity Supplies	234
184.	Masonry Conduits	234
185.	Metal Conduits	236
186.	General Formula for Discharge of Conduits-Chezy's Formula	237
187.	Kutter's Formula	239
188.	Hydraulic Gradient	24 I
189.	Flow of Water in Large Masonry Conduits	244
190.	Flow of Water through Large Closed Pipes	245
191.	Change of Hydraulic Gradient by Changing Diameter of Pipe	250
192.	Control of Flow by Gates at Upper End of Pipe-line	25 I
193.	Flow in Old and New Cast-iron Pipes-Tubercles	25 I
194.	Timber-stave Pipes 2	253

CHAPTER XVIII.

195.	Pumping and Pumps	254
196.	Resistances of Pumps and Main-Dynamic Head	258
197.	Duty of Pumping-engines	260
198.	Data to be Observed in Pumping-engine Tests	261
199.	Basis of Computations for Duty	262
200.	Heat-units and Ash in 100 Pounds of Coal, and Amount of Work Equivalent to	
	a Heat-unit	262
201.	Three Methods of Estimating Duty	265
202.	Trial Test and Duty of Allis Pumping-engine	265
2 03.	Conditions Affecting Duty of Pumping-engines	266
204.	Speeds and Duties of Modern Pumping-engines	266

CHAPTER XIX.

205.	Distributing-reservoirs and their Capacities	267
206.	System of Distributing Mains and Pipes	268
207.	Diameters of and Velocities in Distributing Mains and Pipes	269
208.	Required Pressures in Mains and Pipes	270
209.	Fire-hydrants	270
210.	Elements of Distributing Systems	270

CHAPTER XX.

211.	Sanitary Improvement of Public Water-supplies	276
212.	Improvement by Sedimentation	277
213.	Sedimentation Aided by Chemicals	279
214.	Amount of Sulid Matter Removed by Sedimentation	279
	Two Methods of Operating Sedimentation-basins	

CO	N°	T_{\perp}	EN	I1	$^{r}S.$
----	-------------	-------------	----	----	----------

xi

ART.	Sizes and Construction of Settling-basins	PAGE
	Two Methods of Filtration	
218	Conditions Necessary for Reduction of Organic Matter	201
210.	Slow Filtration through Sand—Intermittent Filtration	282
220	Removal of Bacteria in the Filter	283 286
	Preliminary Treatment—Sizes of Sand Grains	
222	Most Effective Sizes of Sand Grains	280
223.	Air and Water Capacities	288
224.	Bacterial Efficiency and Purification—Hygienic Efficiency	200
	Bacterial Activity near Top of Filter	
226.	Rate of Filtration	201
227.	Effective Head on Filter	201
	Constant Rate of Filtration Necessary	
	Scraping of Filters	
230.	Introduction of Water to Intermittent Filters	294
231.	Effect of Low Temperature	294
	Choice of Intermittent or Continuous Filtration	
233.	Size and Arrangement of Slow Sand Filters	295
234.	Design of Filter-beds	2 96
	Covered Filters	
	Clear-water Drain-pipes of Filters	
237.	Arrangement of the Sand at Lawrence and Albany	300
238.	Velocity of Flow through Sand	302
239.	Frequency of Scraping and Amount Filtered between Scrapings	303
	Cleaning the Clogged Sand	
241.	Controlling or Regulating Apparatus	305
	Cost of Slow Sand Filters	
	Cost of Operation of Albany Filter	
	Operation and Cost of Operation of Lawrence Filter	
	Sanitary Results of Operation of Lawrence and Albany Filters	
	Rapid Filtration with Coagulants	
	Operation of Coagulants	
	Principal Parts of Mechanical Filter-plant-Coagulation and Subsidence	
	Amount of Coagulant-Advantageous Effect of Alum on Organic Matter	
250.	High Heads and Rates for Rapid Filtration	315
	Types and General Arrangement of Mechanical Filters	
252.	Cost of Mechanical Filters.	318
253.	Relative Features of Slow and Rapid Filtration	318

PART IV.

SOME FEATURES OF RAILROAD ENGINEERING.

CHAPTER XXI.

254.	Introductory	320
	Train Resistances	
256.	Grades	322

ART.		PAGE
257.	Curves	324
258.	Resistance of Curves and Compensation in Grades	324
2 59.	Transition Curves	325
260.	Road-bed, including Ties	327
261.	Mountain Locations of Railroad Lines	328
262.	The Georgetown Loop	331
263.	Tunnel-loop Location, Rhætian Railways, Switzerland	331

CHAPTER XXII.

	Railroad Signalling	
265.	The Pilot Guard	335
266.	The Train Staff	335
	First Basis of Railroad Signalling	
	Code of American Railway Association	
2 68a	. The Block	338
269.	Three Classes of Railroad Signals	338
270.	The Banner Signal	338
	The Semaphore	
	Colors for Signalling	
273.	Indications of the Semaphore	341
274.	General Character of Block System	342
275.	Block Systems in Use	343
276.	Locations of Signals	344
	Home, Distant, and Advance Signals	
278.	Typical Working of Auto-controlled Manual System	345
279.	General Results	348
	Distant Signals	
281.	Function of Advance Signals	349
282.	Signalling at a Single-track Crossing	350
283.	Signalling at a Double-track Crossing	352
284.	Signalling for Double-track Junction and Cross-over	352
285.	General Observations	353
286.	Interlocking-machines	354
287.	Methods of Applying Power in Systems of Signalling	357
288.	Train-staff Signalling	358

CHAPTER XXIII.

Evolution of the Locomotive	363
Increase of Locomotive Weight and Rate of Combustion of Fuel	365
Principal Parts of a Modern Locomotive	366
The Wootten Fire-box and Boiler	367
Locomotives with Wootten Boilers	370
Recent Improvements in Locomotive Design	372
Compound Locomotives with Tandem Cylinders	373
Evaporative Efficiency of Different Rates of Combustion	375
. Tractive Force of a Locomotive	376
Central Atlantic Type of Locomotive	378
Consolidation Engine, N. Y. C. & H. R. R. R. R	379
	Increase of Locomotive Weight and Rate of Combustion of Fuel Principal Parts of a Modern Locomotive The Wootten Fire-box and Boiler Locomotives with Wootten Boilers Recent Improvements in Locomotive Design Compound Locomotives with Tandem Cylinders Evaporative Efficiency of Different Rates of Combustion Tractive Force of a Locomotive

CONTEN	T	S.
--------	---	----

GE
80
31
82
84
84
85
86
89

PART V.

THE NICARAGUA ROUTE FOR A SHIP-CANAL.

	Feasibility of Nicaragua Route	
308.	Discovery of Lake Nicaragua	390
309.	Early Maritime Commerce, with Lake Nicaragua	391
310.	Early Examination of Nicaragua Route	392
311.	English Invasion of Nicaragua	392
312.	Atlantic and Pacific Ship-canal Company	392
313.	Survey and Project of Col. O. W. Childs	393
314.	The Project of the Maritime Canal Company	393
315.	The Work of the Ludlow and Nicaragua Canal Commissions	394
316.	The Route of the Isthmian Canal Commission	395
317.	Standard Dimensions of Canal Prism	396
318.	The San Juan Delta	397
319.	The San Carlos and Serapiqui Rivers	398
320.	The Rapids and Castillo Viejo	399
321.	The Upper San Juan	399
	The Rainfall from Greytown to the Lake	
	Lake-surface Elevation and Slope of the River	
324.	Discharges of the San Juan, San Carlos, Serapiqui	401
325.	Navigation on the San Juan	401
	The Canal Line through the Lake and Across the West Side	
	Character of the Country West of the Lake	
328.	Granada to Managua, thence to Corinto	404
329.	General Features of the Route	404
330.	Artificial Harbor at Greytown	405
331.	Artificial Harbor at Brito	407
332.	From Greytown Harbor to Lock No. 2	408
333.	From Lock No. 2 to the Lake	409
334.	Fort San Carlos to Brito	410
335.	Examinations by Borings	411
336.	Classification and Estimate of Quantities	412
	Classification and Unit Prices	
338.	Curvature of the Route	413

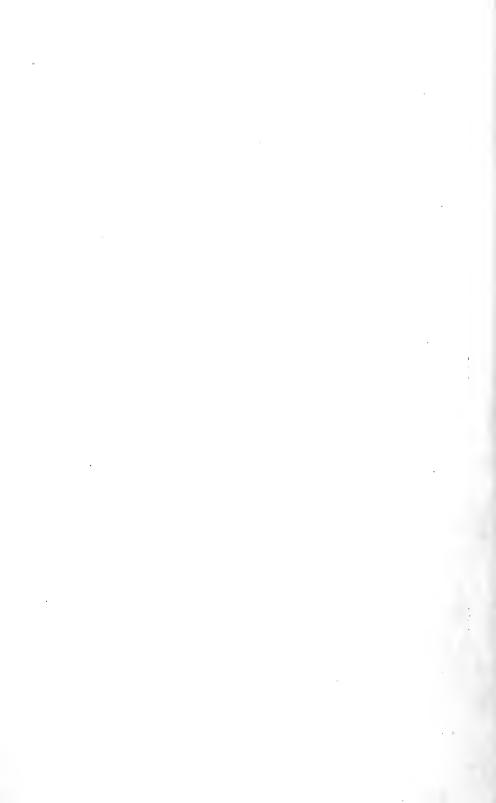
xiii

CONTENTS.

ART.		PAGE
339.	The Conchuda Dam and Wasteway	414
340.	Regulation of the Lake Level	417
341.	Evaporation and Lockage	418
342.	The Required Slope of the Canalized River Surface	419
343.	All Surplus Water to be Discharged over the Conchuda Dam	419
344.	Control of the Surface Elevation of the Lake	420
345.	Greatest Velocities in Canalized River	425
346.	Wasteways or Overflows	427
347.	Temporary Harbors and Service Railroad	427
348.	Itemized Statement of Length and Cost	427

PART VI.

THE PANAMA ROUTE FOR A SHIP CANAL.


349.	The First Panama Transit Line	429
350.	Harbor of Porto Bello Established in 1597	429
351.	First Traffic along the Chagres River, and the Importance of the Isthmian	
	Commerce	431
352.	First Survey for Isthmian Canal Ordered in 1520	431
353.	Old Panama Sacked by Morgan and the Present City Founded	431
354.	The Beginnings of the French Enterprise	432
355.	The Wyse Concession and the International Congress of 1870	432
356.	The Plan without Locks of the Old Panama Canal Company	433
357.	The Control of the Floods in the Chagres	434
358.	Estimate of Time and Cost-Appointment of Liquidators	435
359.	The "Commission d'Etude"	435
360.	Extensions of Time for Completion	436
361.	Organization of the New Panama Canal Company, 1894	437
362.	Priority of the Panama Railroad Concession	437
363.	Resumption of Work by the New Company-The Engineering Commission and	
	the Comité Technique	438
364.	Plan of the New Company	439
365.	Alternative Plan of the New Panama Canal Company	440
366.	The Isthmian Canal Commission and its Work	441
367.	The Route of the Isthmian Canal Commission that of the New Panama Canal	••
	Company	441
368.	Plan for a Sea-level Canal	443
369.	Colon Harbor and Canal Entrance	443
370.	Panama Harbor and Entrance to Canal	444
371.	The Route from Colon to Bohio	445
372.	The Bohio Dam	446
373.	Variation in Surface Elevation of Lake	448
374.	The Extent of Lake Bohio and the Canal Line in It	448
375.	The Floods of the Chagres	440

xiv

CONTENTS.

ART.	PAC	GE
376.	The Gigante Spillway or Waste-weir 4	50
377.	Storage in Lake Bohio for Driest Dry Season 44	5 I
378.	Lake Bohio as a Flood Controller	52
379.	Effect of Highest Floods on Current in Channel in Lake Bohio 4	53
380.	Alhajuela Reservoir not Needed at Opening of Canal 4	53
381.	Locks on Panama Route 4	54
382.	The Bohio Locks	54
383.	The Pedro Miguel and Miraflores Locks 4	54
384.	Guard-gates near Obispo 4	55
385.	Character and Stability of the Culebra Cut 4	55
386.	Length and Curvature 4	.56
	Small Diversion-channels 4	
388.	Principal Items of Work to be Performed 4	57
389.	Lengths of Sections and Elements of Total Cost 4	.58
390.	The Twenty Per Cent Allowances for Exigencies 4	59
391.	Value of Plant, Property, and Rights on the Isthmus 4	60
392.	Offer of New Panama Coal Company to Sell for \$40,000,000 4	61
393.	Annual Costs of Operation and Maintenance 4	62
394.	Volcanoes and Earthquakes 4	63
395.	Hygienic Conditions on the Two Routes 4	64
396.	Time of Passage Through the Canal 4	65
397.	Time for Completion on the Two Routes 4	66
398.	Industrial and Commercial Value of the Canal 4	69
399.	Comparison of Routes 4	71

xv

PART I.

ANCIENT CIVIL-ENGINEERING WORKS.

CHAPTER I.

I. Introductory.---It' is a common impression even among civil engineers that their profession is of modern origin, and it is frequently called the youngest of the professions. That impression is erroneous from every point of view. Many engineering works of magnitude and of great importance to the people whom they served were executed in the very dawn of history, and they have been followed by many other works of at least equal magnitude and under circumstances scarcely less noteworthy, of which we have either remains or records. During the lapse of the arts and of almost every process of civilization throughout the darkness of the Middle Ages there was little if any progress made in the art of the engineer, and what little was done was executed almost entirely under the name of architecture. With the revival of intellectual activity and with the development of science the value of its practical application to the growing nations of the civilized world caused the modern profession of civil engineering to take definite shape and to be known by the name which it now carries, but which was not known to ancient peoples. Unfortunately the beginnings of engineering cannot be traced; there is no historical record running back far enough to render account of the earliest engineering works whose ruins remain as enduring evidence of what was then accomplished.

It is probably correct to state that the material progress of any people has always been concurrent with the development of the art of civil engineering, and, hence, that the practice of civil engineering began among the people who made the earliest progress in civilization, to whom "the art of directing the Great Sources of Power in Nature for the use and convenience of man" became an early and imperative necessity. Indeed that conclusion is confirmed by the most ancient ruins of what may be termed public works that archæological investigations have revealed to us, among which are those to be found in the Chaldean region, in India, and in Egypt. Obviously, anything like a detailed account of the structural and other works of such ancient character must be lacking, as some of them were built before even the beginnings of history. Our only data, therefore, are the remains of such works, and unfortunately they have too frequently been subject to the destructive operations of both man and nature.

2. Hydraulic Works of Chaldea and Egypt.-It is absolutely certain that the populous centres of prehistoric times could not have existed nor have been served with those means of communication imperatively necessary to their welfare without the practice of the art of engineering, under whatever name they may have applied to it. It is known beyond any doubt that the anciently populous and prosperous country at the head of the Persian Gulf and watered by the Euphrates and the Tigris was irrigated and served by a most complete system of canals. and the same observation can be made in reference to the valley of the Nile. It is not possible at this period of that country's history to determine to what extent irrigation was practised or how extensively the former country was served by water transportation conducted along artificial channels; but hydraulic works, including dams and sluices with other regulating appliances designed to bring waters from the rivers on to the land, were certainly among the earliest executed for the benefit of the communities inhabiting those regions. The remains of those works. spread over a large territory in the vicinity of ancient Babylon, Nippur, and other centres of population, show beyond the slightest doubt that there existed a network of water communication throughout what was in those days a country rich in agricultural products and which supported the operations of a most pros-

perous commerce. These canals were of ample dimensions to float boats of no mean size, although much smaller than those occupied in our larger systems of canal transportation. They

were many miles in length, frequently interlacing among themselves and intersecting both the Tigris and the Euphrates. The remains of these canals, some of them still containing water, show that they must originally have been filled to depths varying from five or six to fifteen or twenty feet, and that their widths may have been twenty-five or thirty feet or more. Another curious feature is their occasional arrangement in twos and threes alongside of each other with embankments only between. The entire Euphrates-Tigris valley from the head of the Persian Gulf at least to modern Baghdad (i.e., Babylonia) and possibly to ancient Nineveh was served by these artificial waterways. Later, when Alexander the Great made one of his victorious expeditions through the Assyrian country, he found in the Tigris obstructions to the passage of his ships down-stream in the shape of masonry These substantial This was between 356 and 322 B.C. dams. dams were built across the river for the purpose of intakes to irrigating-canals for the benefit of the adjacent country. These canals, like those of Egypt, were fitted with all the necessary regulating-devices of sluices or gates, both of a crude character, but evidently sufficiently effective for their purpose.

It is known that there were in those early days interchanges of large amounts and varieties of commodities, and it is almost if not quite certain that the countries tributary to the Persian Gulf not only produced sufficient grain for their own needs, but also carried on considerable commerce with the Asiatic coast. We have no means of ascertaining either the volume or the precise character of the traffic, but there is little or no doubt of its existence. It is established also that the waters of the Red Sea and the Nile were connected by a canal about 1450 B.C. Recent investigations about Nippur and other sites of ancient cities in that region confirm other indications that the practice of some branches of hydraulic engineering had received material development from possibly two to four thousand years before the Christian era.

3. Structural Works in Chaldea and Egypt.—The ruins of ancient buildings which have been unearthed by excavations in the same vicinity show with the same degree of certainty that the art of constructing buildings of considerable dimensions had

also made material progress at the same time, and in many cases must have involved engineering considerations of a decided character both as to structural materials and to foundations. Bricks were manufactured and used. Stones were quarried and dressed for building purposes and applied so as to produce structural results of considerable excellence. Even the arch was probably used to some extent in that locality in those early days, but stone and timber beams were constantly employed. In the prehistoric masonry constructions of both the Egyptians and Chaldeans and probably other prehistoric peoples, lime or cement mortar was not employed, but came into use at a subsequent period when the properties of lime and cement as cementing materials began to be recognized. The first cementing material probably used in Egypt was a sticky clay, or possibly a calcareous clay or earth. The same material was also used in the valley of the Euphrates, but in the latter country there are springs of bitumen, where that material exudes from the earth in large quantities. The use of this asphaltic cement at times possibly involved that of sand or gravel in some of the early constructions. Later, lime mortar and possibly a weak hydraulic cement came to be employed, although there is little if any evidence of the latter material.

Iron was manufactured and used at least in small quantities, and for some structural purposes, even though in a crude manner. Bituminous or other asphaltic material was found as a natural product at various points, and its value for certain structural purposes was well known; it was used both for waterproofing and for cement. It is practically certain that the construction of engineering works whose interesting ruins still remain involved a considerable number of affiliated engineering operations of which no evidence has yet been found, and of the employment of tools and appliances of which we have no record. So far as these works were of a public character they were constructed by the aid of a very different labor system from that now existing. The kings or ruling potentates of those early times were clothed with the most arbitrary authority, sometimes exercised wisely in the best interests of their people, but at other times the ruling motive was selfishness actuated by the most intense egotism

and brutal tyranny. Hence all public works were executed practically as royal enterprises and chiefly by forced labor, perhaps generally without compensation except mere sustenance. Under such conditions it was possible to construct works on a scale out of all proportion to national usefulness and without structural economy. When it is remembered that these conditions existed without even the shadow of engineering science, it is obvious that structural economy or the adaptation of wellconsidered means to an end will not be found to characterize engineering operations of prehistoric times. Nevertheless there are evidences of good judgment and reasonable engineering design found in connection with some of these works, particularly with those of an hydraulic character. Water was lifted or pumped by spiral or screw machines and by water-wheels, and it is not improbable that other appliances of power served the purposes of many industrial and crude manufacturing operations which it is now impossible for us to determine.

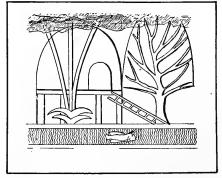
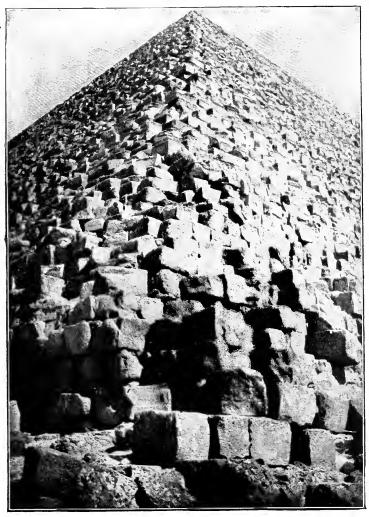


FIG. I .-- Home Built on Piles in the Land of Punt.

It is an interesting fact that while many ancient works were exceedingly massive, like the pyramids, the largest of those of which the ruins have been preserved seldom seem to show little or any evidence of serious settlement. Whether the ancients had unusually sound ideas as to the design of foundation works, or whether those only have come down to us that were founded directly upon rock, we have scarcely any means of deciding. Nor can we determine at this time what special recourses were available for foundation work on soft ground. Probably one of the earliest recognized instances, if not the earliest, of the building of structures on piles is that given by Sir George Rawlinson, when he states that a fleet of merchant vessels sent down the northeast African coast by the Egyptian queen Hatasu, probably 1700 B.C. or 1600 B.C., found a people whose huts were supported on piles in order to raise them above the marshy ground and possibly for additional safety. A representation (Fig. 1) of one of these native homes on piles is found among Egyptian hieroglyphics of the period of Queen Hatasu.


4. Ancient Maritime Commerce.-It is well known that both the Chaldean region and the Nile valley and delta, at least from Ethiopia to the Mediterranean Sea, were densely populated during the period of two to four or five thousand years before the Christian era. By means of the irrigation works to which reference has already been made both lands became highly productive, and it is also well known that those peoples carried on a considerable commerce with other countries, as did the Phœnicians also, at least between the innumerable wars which seemed to be the main business of states in those days. These commercial operations required not only the construction of fleets of what seem to us small vessels for such purposes, but also harbor works at least suitable to the vessels then in use. The marine activity of the Phœnicians is undoubted, and there is strong reason to believe that there was also similar activity between Babylonian ports and those east of them along the shores of the Indian Ocean, perhaps even as far as ancient Cathay, and possibly also to the eastern coast of Africa.

Investigations in the early history of Egypt have shown that a Phœnician fleet, constructed at some Egyptian port on the Red Sea, undoubtedly made the complete circuit of Africa and returned to Egypt through the Mediterranean Sea the third year after setting out, over 2100 years (about 600 B.C.) before the historic fleet of the Portuguese explorer Vasco da Gama sailed the same circuit in the opposite direction. It is therefore probable, in view of these facts, that at least simple harbor works of sufficient efficiency for those early days found place in the public works of the ancient kingdoms bordering upon the Mediterranean and Red seas and the Persian Gulf.

5. The Change of the Nile Channel at Memphis.—Although such obscure accounts as can be gathered in connection with the founding of the city of Memphis are so shadowy as to be largely legendary, it has been established beyond much if any doubt that prior to its building the reigning Egyptian monarch determined to change the course of the Nile so as to make it flow on the easterly side of the valley instead of the westerly. This was for the purpose of securing ample space for his city on the west of the river, and, also, that the latter might furnish a defence towards the east, from which direction invading enemies usually approached. He accordingly formed an immense dam or dike across the Nile as it then existed, and compelled it to change its course near the foot of the Libyan Hills on the west and seek a new channel nearer the easterly side of the valley. This must have been an engineering work of almost appalling magnitude in those early times, yet even with the crude means and limited resources of that early period, possibly, if not probably, at least 5000 B.C., the work was successfully accomplished.

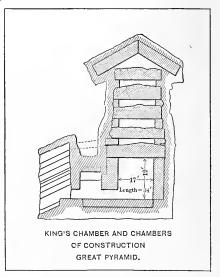
6. The Pyramids.—Among the most prominent ancient structural works are the pyramids of Egypt, those royal tombs of which so much has been written. These are found chiefly in the immediate vicinity of Memphis on the Nile. There are sixty or seventy of them in all, the first of which was built by the Egyptian king Khufu and is known as the "Great Pyramid" or the "First Pyramid of Ghizeh." They have been called "the most prodigious of all human constructions." Their ages are uncertain, but they probably date from about 4000 B.C. to about 2500 B.C. These are antedated, however, by two Egyptian pyramidal constructions of still more ancient character whose ages cannot be determined, one at Meydoum and the other at Saccarah.

The pyramids at Memphis are constructed of limestone and granite, the latter being the prominent material and used entirely for certain portions of the pyramids where the stone would be subjected to severe duty. The great mass of most of the pyramids consists of roughly hewn or squared blocks with little of any material properly considered mortar. The interior portions, especially of the later pyramids, were sometimes partially composed of chips, rough stones, mud bricks, or even mud, cellular retaining-walls being used in the latter cases for the main struc-

A Corner of the Great Pyramid. (Copyright by S. S. McClure Co., 1902. Courtesy of *McClure's Magazine*.)

tural features. In all pyramids, however, the outer or exposed surfaces and the walls and roofs of all interior chambers were finished with finely jointed large stones, perhaps usually polished. The Great Pyramid has a square base, which was originally 764 feet on a side, with a height of apex above the surface of the ground of over 480 feet. This great mass of masonry contains




FIG. 2.-Section of the Great Pyramid.

Syene. Some of the blocks at the base are 30 feet long with a cross-section of 5 feet by 4 or 5 feet.

is of comparatively small stones, although so squared and dressed as to fit closely together. Familiar descriptions of this work have told us that the small passages leading from the exterior to the sepulchral chambers are placed nearly in a vertical plane through the apex. The highest or king's chamber, as it is called, measures 34 feet by 17 feet and is 19 feet high, and in it is placed the sarcophagus of King Khufu. It is composed entirely of granite most exactly cut and

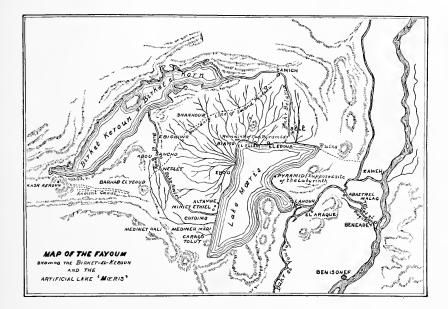

about 3,500,000 cubic yards and weighs nearly 7,000,000 The area of its base tons is 13.4 acres. The Greek historian Herodotus states that its construction required the labor of 100,000 men for twenty years. An enormous quantity of granite was required to be transported about 500 miles down the Nile from the quarries at

The bulk of the entire mass

FIG. 3.

fitted and beautifully polished. The construction of the roof is remarkable, as it is composed of nine great blocks "each nearly 10 feet long and 4 feet wide, which are laid side by side upon the walls so as to form a complete ceiling." There is a singular feature of construction of this ceiling designed to remove all pressure from it and consisting of five alternate open spaces and blocks of granite placed in vertical series, the highest open space being

nrne e rea 'ra'.


oofed over with inc ined ranite sla s leani or strutted a hinst e ch other li e the letter inverte . his arr nge en relieves t e ceilin of the se ulchral cham er from all ressure in eed only the inclined highest set of granite blocks or slabs carry any load besides their own weight. There are two small ventilatingor air-shafts running in about equally inclined directions upward from the king's chamber to the north and south faces of the pyramid. These air-shafts are square and vary between 6 and 9 inches on a side. The age of this pyramid is probably not far from 5000 years.

The second pyramid is not much inferior in size to the Great Pyramid, its base being a square of about 707 feet on a side, and its height about 454 feet. The remaining pyramids are much inferior in size, diminishing to comparatively small dimensions, and of materials much inferior to those used in the earlier and larger pyramids.

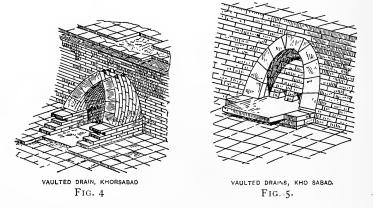
7. Obelisks, Labyrinths, and Temples.-Among other constructions of the Egyptians which may be called engineering in character, as well as architectural, are the obelisks, the "Labyrinth" so called, on the shore of Lake Mœris, and the magnificent temples at the ancient capital Thebes, which are the most remarkable architectural creations probably that the world has ever known. These latter were not completed by one king, as was each of the pyramids. They were sometimes despoiled and largely wrecked by invading hosts from Assyria, and then reconstructed in following periods by successive Egyptian kings and again added to by still subsequent monarchs, whose reigns were characterized by statesmanship, success in war, and prosperity in the country. Their construction conclusively indicates laborious operations and transportation of great blocks of stone characteristic of engineering development of the highest order for the days in which they took place. The dates of these constructions are by no means well defined, but they extend over the period running from probably about 2500 B.C. to about 400 B.C., with the summit of excellence about midway between.

Another class of ancient structures which can receive but a passing notice, although it deserves more, is the elaborate rock tombs of some of the old Egyptian monarchs in the rocks of the Libyan Hills. They were very extensive constructions and contained numerous successions of "passages, chambers, corridors, staircases, and pillared halls, each further removed from the entrance than the last, and all covered with an infinite number of brilliant paintings." These tombs really constituted rock tunnels with complicated ramifications which must have added much to the difficulty of the work and required the exercise of engineering skill and resources of a high order.

8. Nile Irrigation.—The value of the waters of the Nile for irrigation and fertilization were fully appreciated by the ancient Egyptians. They also apparently realized the national value of some means of equalizing the overflow, although the annual régimen of the Nile was unusually uniform. There were, however,

periods of great depression throughout the whole Nile valley consequent upon the phenomenal failure of overflow to the normal extent. One of the earliest monarchs who was actuated by a fine public spirit undertook to solve the problem of providing against such depressions by diverting a portion of the flood-waters of the Nile into an enormous reservoir, so that during seasons of insufficient inundation the reservoir-waters could be drawn upon for the purpose of irrigation. This monarch is known as the good Amenemhat, although the Greeks call him Mœris. In the Nile valley, less than a hundred miles above Memphis, on the left side or to the west of the river, there is a gap in the Libyan Hills leading to an immense depression, the lower parts of which are much below the level of the water in the Nile. This topographical depression, perhaps 50 miles in length by 30 in breadth, with an area between 600 and 700 square miles, now contains two bodies of water or lakes, one known as the Birket Keroun and the other as Lake Mœris. The vicinity of this depression is called the Fayoum. A narrow rocky gorge connects it with the west branch of the Nile, known as Bahr el Yousuf, and it is probable that during extreme high water in the Nile there was a natural overflow into the Fayoum. The good Amenemhat, with the judgment of an engineer, or guided by advisers who possessed that judgment, appreciated the potential value of this natural depression as a possible reservoir for the surplus Nile waters and excavated a channel, possibly a natural channel enlarged, of suitable depth from it to the Bahr el Yousuf. As a consequence he secured a storage-reservoir of enormous capacity and which proved of inestimable value to the lowlands along the Nile in times of shortage in the river-floods.

Investigators have differed much in their conclusions as to the extent of this reservoir. Some have maintained that only the lower depressions of the Fayoum were filled for reservoir purposes, while others. like Mr. Cope Whitehouse, believe that the entire depression of the Fayoum was utilized with the exception of a few very high points, and that the depth of water might have been as much as 300 feet in some places. In the latter case the circuit of the lake would have been from 300 to 500 miles. Whatever may have been the size of the lake, however, its construction and use with its regulating-works was a piece of hydraulic engineering of the highest type, and it indicates an extraordinary development of that class of operations for the period in which it was executed. The exact date of this construction cannot be determined, but it may have been as early as 2000 B.C., or perhaps earlier.

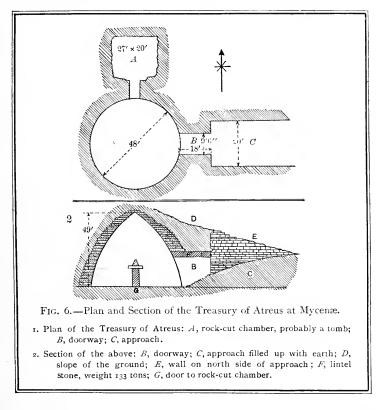

9. Prehistoric Bridge-building. — The development of the art of bridge-building seems to have lagged somewhat in the prehistoric period. The use of rafts and boats prevented the

need of bridges for crossing streams from being pressing. It is not improbable that some small and crude pile or other timber structures of short spans were employed, but no remains of this class of construction have been found. Large quantities of timber and much of an excellent quality were used in the construction of buildings. That much is known, but there is practically no evidence leading to the belief that timber bridges of any magnitude were used by prehistoric people. It is highly probable that single-timber-beam crossings of small streams were used, but that must be considered the limit of ancient bridging until other evidence than that now available is found.

10. Ancient Brick-making.—It has already been seen that **10.** Ancient Brick-making.—It has already been seen that stone as a building material has been used since the most ancient periods, and the use of brick goes back almost as far. Fortunately it was frequently a custom of the ancient brick-makers to stamp proprietary marks upon their bricks, and we know by these marks that bricks were made in the Chaldean regions certainly from 3000 to 4000 years before the Christian era. In Egypt also the manufacture of brick dates back nearly or quite as far. Some of these Chaldean bricks, as well as those in other parts of the ancient world, were of poor quality, readily destroyed by water or even a heavy storm of rain when driving upon them. Other bricks, however, were manufactured of good quality of material and by such methods as to produce results which com-pare favorably with our modern building-bricks. The ruins of cities, at least in Assyria and Chaldea, show that enormous of cities, at least in Assyria and Chaldea, show that enormous buildings, many of them palaces of kings, were constructed largely of these bricks, although they were elaborately decorated with other material. The walls were heavy, indeed so massive that many of the ruin-mounds are frequently formed almost entirely of the disintegrated brick of poorer quality. These old builders not only executed their work on a large scale, but did not hesitate to pile up practically an artificial mountain of earth, or other suitable material, on which to construct a palace or temple. The danger of water to these native bricks was so well known and recognized that elaborate and very excellent systems of subsurface drains or sewers were frequently con-structed to carry off the storm-water as fast as it fell.

ANCIENT CIVIL-ENGINEERING WORKS.

II. Ancient Arches. — In the practice of these building operations it became necessary to form many openings and to construct roofs for the sewers or drains, and the arch, both true and false, came to be used in the Euphrates valley, in that of the Nile, and in other portions of the ancient world. Pointed sewer-arches of brick have been found in what is supposed to be the palace of Nimrod on the Tigris River, possibly of the date about 1300 B.C. Excavations at Nippur have revealed a mud-brick pointed arch supposed to date back to possibly 4000 Also semicircular voussoir arches have been discovered B.C. at the ruins of Khorsabad near Nineveh with spans of 12 to 15 feet. These arches are supposed to belong to the reign of Sargon, an Assyrian king who flourished about 705 to 722 B.C. Again, the ancient so-called treasury of Atreus at Mycenæ in Greece, although a dome, exhibits an excellent example of the method of forming the false arch, the date of the construction being probably about 1000 B.C. The main portion of this structure consists of a pointed dome, the diameter of the base being



48 feet and the interior central height 49 feet. A central section shows a beehive shape, as in Fig. 6.

The exterior approach is between two walls 20 feet apart, the intermediate entrance to the dome or main chamber being a passage 9 feet 6 inches wide at the bottom and 7 feet 10 inches at the top and about 19 feet high. At right angles to the entrance there is a chamber 27 feet by 20 feet cut into the adjacent

16

rock, entered through a doorway about \downarrow feet 6 inches wide and 9 feet 6 inches high. Both the main entrance to the dome and the doorway to the adjacent chamber are covered or roofed with large flat lintel-stones, over which are the triangular relieving (false) arches, so common in ancient construction, by which the lintels are relieved of load, the triangular openings being closed by single, great upright flat stones. There are a considerable number of these in Greece. The stone used is a "hard

and beautiful breccia" from the neighboring hills and Mount Eubora near by. The courses of stone are about two feet thick and closely fitted without cement.

The great majority, or perhaps all, of the Assyrian true arches, so far discovered, are formed of wedge-shaped bricks, most of them

being semicircular, although some are pointed, the span being not over about 15 feet. The most of the arches found at Nineveh and Babylon belong to a period reaching possibly from 1300 to 800 B.C., but some of the Egyptian arches are still older. Egyptians, Assyrians, Greeks, and other ancient people used false arches formed by projecting each horizontal course of stones or bricks over that below it on either side of an opening. The repetition of this procedure at last brings both sides of the opening together at the top of the arch, and they are surmounted at that point with a single flat stone, brick, or tile. It has been supposed by some that these false arches, whose sides may be formed either straight or curved, exhibit the oldest form of the arch, and that the true arch with its ring or rings of wedgeshaped voussoirs was a subsequent development. It is possible that this is true, but the complete proof certainly is lacking. In Egypt and Chaldea both styles of arches were used concurrently, and it is probably impossible to determine which preceded the other. Again, some engineers have contended that two flat slabs of stone leaning against each other, each inclined like the rafters of a roof, was the original form of the arch, as found in the pyramids of Egypt; but it is probable that the true arch was used in Chaldea prior to the time of the pyramids. Indeed crude arches of brick have been found at Thebes in Egypt dating back possibly to 2500 B.C., or still earlier. Aside from that, however, such an arrangement of two stones is not an arch at all, either true or false. The arrangement is simply a combination of two beams. A condition of stress characteristic of that in the true arch is lacking.

The ancient character of the engineering works whose ruins are found in Chaldea and Assyria is shown by the simple facts that Babylon was destroyed about the year 690 B.C. and Nineveh about the year 606 B.C.